What effect does the concentration of a substance have on the overall rate of a reaction?

Can We Help with Your Assignment?

Let us do your homework! Professional writers in all subject areas are available and will meet your assignment deadline. Free proofreading and copy-editing included.


A higher concentration of a given substance may cause a reaction to proceed at a faster rate when compared to a reaction with a lower concentration of the same given substance.  This would be because there would be more acid molecules to collide with the magnesium atoms. Therefore, an increase in concentration would cause an increase in possible collisions, thus there may be a faster reaction rate.


2HCl(l) + Mg(s) -> MgCl2(s) + H2(g)

The reaction between magnesium metal and hydrochloric acid is suitable for this particular experiment. The concentration of hydrochloric acid can easily and safely be adjusted by adding water to the solution. The reaction produces a gas, so the reaction rate can easily be determined by measuring the amount of gas released as the reaction proceeds. Furthermore, the progression of the reaction can be seen, without difficulty, as the amount of magnesium metal decreases visibly until completely diminished.


  • Electronic balance
  • Weighing boats
  • Timer
  • 40mL 8.9 mol hydrochloric acid
  • 1.5g magnesium metal
  • Distilled water
  • 100mL Erlenmeyer flask
  • 10mL graduated cylinder
  • 50mL graduated cylinder
  • 200mL beaker
  • Glass stirring rod

Experimental Design

The first step of this experiment will be to create 3 different samples of hydrochloric acid with different molarities (2 mol, 1 mol, 0.5 mol). To do this, the hydrochloric acid stock solution (with a known molarity) will be mixed with distilled water until the desired molarity has been achieved. 6 50mL samples of hydrochloric acid will be created (2 trials for each molarity). Next, 6 samples of 0.25g of magnesium metal will be mixed with each of the 3 hydrochloric acid solutions (2 trials each). The initial mass (including both the hydrochloric acid and magnesium metal) of each sample must be recorded. As the magnesium metal is added to the hydrochloric acid solution, the timer will be started. The mass of the solution will be recorded at 30-second intervals. Once the reaction is complete (no more bubbles are being released and there is no magnesium metal remaining), the timer is stopped and the final time and mass are recorded. Observations should be recorded in a table similar to the one below:

Molarity of HCl Trial # Initial mass Time Mass Final mass
2 mol/L 1 30 sec
60 sec
90 sec
2 30 sec
60 sec
90 sec
1 mol/L 1 30 sec
60 sec
90 sec
2 30 sec
60 sec
90 sec
0.5 mol/L 1 30 sec
60 sec
90 sec
2 30 sec
60 sec
90 sec


  • To create the 2mol hydrochloric acid solution, 22.4mL of the 8.9mol hydrochloric acid stock solution was mixed with 77.6mL of distilled water in an Erlenmeyer flask and stirred. The solution was then divided into two 50mL samples.
  • To create the 1mol hydrochloric acid solution, 11.2mL of the 8.9mol hydrochloric acid stock solution was mixed with 88.8mL of distilled water in an Erlenmeyer flask and stirred. The solution was then divided into two 50mL samples.
  • To create the 0.5mol hydrochloric acid solution, 5.6mL of the 8.9mol hydrochloric acid stock solution was mixed with 94.4mL of distilled water in an Erlenmeyer flask and stirred. The solution was then divided into two 50mL samples.
  • Six 0.25g samples of magnesium metal were set aside in weighing boats.
  • 50mL of the 2mol hydrochloric acid solution in a beaker and one weigh boat containing 0.25g of magnesium metal were placed on an electronic balance and the initial mass was recorded.
  • The sample of magnesium metal was then added to the hydrochloric acid sample (still remaining on the scale). At the same time, the timer was started.
    **NOTE: Be sure to keep the weigh boat on the scale after adding the magnesium metal. This is so that the initial mass and final mass reflect only the gas being released.
  • Every 30 seconds the mass was recorded in the data table.
  • Steps 5-7 were repeated with the second samples of hydrochloric acid and magnesium metal (using the same molarity of hydrochloric acid).
  • Steps 5-8 were repeated using 1mol hydrochloric acid and then 0.5mol hydrochloric acid.
Properties of Ionic and Molecular Substances Lab


Molarity of HCl Trial # Initial mass Time Mass Final mass
2 mol/L 1 100.91g 30 sec 100.67g 100.45g
60 sec 100.56g
90 sec 100.45g
2 102.61 30 sec 102.40g 102.14g
80 sec 102.26g
90 sec 102.14g
1 mol/L 1 99.82g 30 sec 99.76g 99.48g
60 sec 99.72g
90 sec 99.69g
120 sec 99.65g
150 sec 99.62g
180 sec 99.59g
210 sec 99.56g
240 sec 99.54g
270 sec 99.52g
300 sec 99.50g
330 sec 99.49g
345 sec 99.48g
2 100.24g 30 sec 100.20g 99.92g
60 sec 100.15g
90 sec 100.12g
120 sec 100.08g
150 sec 100.05g
180 sec 100.02g
210 sec 99.99g
240 sec 99.97g
270 sec 99.94g
300 sec 99.93g
330 sec 99.92g
0.5 mol/L 1 96.45g 30 sec 96.43g 96.17g
60 sec 96.42g
90 sec 96.40g
120 sec 96.39g
150 sec 96.38g
180 sec 96.37g
210 sec 96.36g
240 sec 96.35g
270 sec 96.34g
300 sec 96.33g
330 sec 96.32g
360 sec 96.31g
390 sec 96.31g
420 sec 96.29g
450 sec 96.26g
480 sec 96.25g
510 sec 96.24g
540 sec 96.23g
570 sec 96.23g
600 sec 96.22g
630 sec 96.21g
660 sec 96.20g
690 sec 96.20g
720 sec 96.19g
750 sec 96.17g
780 sec 96.17g
2 101.42g 30 sec 101.41g 101.15g
60 sec 101.40g
90 sec 101.39g
120 sec 101.38g
150 sec 101.37g
180 sec 101.36g
210 sec 101.35g
240 sec 101.32g
270 sec 101.32g
300 sec 101.30g
330 sec 101.30g
360 sec 101.29g
390 sec 101.28g
420 sec 101.27g
450 sec 101.26g
480 sec 101.25g
510 sec 101.24g
540 sec 101.23g
570 sec 101.22g
600 sec 101.21g
630 sec 101.20g
660 sec 101.19g
690 sec 101.18g
720 sec 101.16g
750 sec 101.16g
780 sec 101.15g


One issue that our group encountered when performing this experiment was that when using the 0.5mol hydrochloric acid, the reaction proceeded very slowly and we had not allowed for enough time for the reaction to complete. This could be resolved by using a molarity between 1mol/L and 2mol/L instead of decreasing the molarity to 0.5mol/L.

Sources of Error

In chemistry you can almost never have the perfect environment and perfect accuracy to receive the perfect result. Each experiment, though done multiple times, will almost always have different results. In our experiment there were many such sources of error. The Magnesium metal, when poured into the HCl acid, left its residue of the measuring boat so not every single particle of Mg was used which, in turn, might have caused a minute difference in the final result. Another factor is that we might not have had exactly 50 ml of HCl. Its cohesive properties left residue on the sides of the beaker which might have caused a small difference. The graduated cylinder also is only exact to the 0.01 ml which leaves a 1% margin of error. Also, the hydrogen gas release condensed around the sides of the beaker which might have also had a change in the mass of the final product.

Concentration and How It Affects The Rate of Reaction

According to our findings and the collision theory, concentration clearly affects the rate of reaction. This is because by increasing the concentration of the reactant you increase the number of molecules of the reactant which, in turn, increases the frequency of the collisions. The more particles there are the easier it is to find a particle to collide with, which increases the time it takes for the reaction to occur.

Concentration of HCl (Mol/L) Initial Mass of Reactants


Final Mass of Reactants


Difference in Mass


Time Taken for Reaction to Occur (Seconds) Rate of Reaction

∆M(Mm of H2)X2/Time

2 Molar (Trial 1) 100.67g 100.45g 0.22g 90 0.0098755 Mol/L/Sec
2 Molar (Trial 2) 102.40g 102.14g 0.26g 90 0.0116711


1 Molar (Trial 1) 99.76g 99.48g 0.28g 345 0.0032788


1 Molar (Trial 2) 100.20g 99.92g 0.28g 330 0.0034279


0.5 Molar (Trial 1) 96.43g 96.17g 0.26g 780 0.0013466


0.5 Molar (Trial 2) 101.41g 101.15g 0.26g 780 0.0013466


Cite this article as: William Anderson (Schoolworkhelper Editorial Team), "Concentration & Rate Factors Lab Answers," in SchoolWorkHelper, 2019,
1 Comment
Oldest Most Voted
Inline Feedbacks
View all comments
Fatin A.
Fatin A.
2 years ago